Using Docker and ZFS
to speed up development time

Matic Adami¢ Aleksandar Tosi¢
University of Primorska University of Primorska
Faculty of Mathematics, Natural Sciences Faculty of Mathematics, Natural Sciences
and Information Technologies and Information Technologies
89202071@student .upr.si aleksandar.tosic@upr.si
May 2023
Abstract

Testing is an important part of software development. However, testing can be time consum-
ing especially when the software depends heavily on a database. Moreover, testing the software
is greatly interconnected with the state of the database. Tests have requirements regarding
the state of the database. In this paper we propose an architecture that aims to speed up the
testing phase in software development, when testing is done via traditional databases and often
time consuming. The solution takes care of generating new isolated database instances, which
can be queried, re-used or restarted at any given time. These database instances are time and
space efficient. We argue this leads to faster testing, due to isolated instances that can be used
in testing in parallel, and therefore speeds up the entire development time, helping teams solve
bugs and deliver software updates faster.

Keywords— ZFS, Docker, database, development

1 Introduction

Development pipelines, such as Continuous integration and Continuous deployment (CI/CD) are an essen-
tial part of modern software development. They offer a way for developers to work on new features and fix
problems in existing ones. CI is a practice almost all software development teams use to update their code
base. It can generally be viewed as a process of three main steps: 1) make code-base changes, 2) test those
changes, 3) merge changes.

Two of these steps, keeping track of code base changes and merging, usually involve a version control
system (for an example Git). The in-between step, testing, is usually the step that differs the most between
different development teams. This is usually due to the nature of the product that is being developed. Many
software products that must and still are being maintained to this day suffer from what the industry call
"legacy code-bases". Legacy code-bases are usually pieces of fully developed software, which can be very
complex. It can sometimes be hard to integrate them into what are considered today’s best testing practices.

In order to test such programs, it’s considered good practice to not only test individual parts of the
program (class-level tests), but also the application as a whole, usually known as integration testing. Such
a test must include a database server instance, which would mimic what actually happens in a production
environment. Keep in mind, such programs can depend on which database is used; the program might work
with MySql, but not with an Oracle database.

We propose a solution for legacy code-bases which perform any kind of batch processing on potentially
very large databases. The solution is a system which allows one to generate multiple database instances for
a specific database, which all share the same underlying data. Each such instance is independent of one

another and can be started, stopped or re-started at any given time. Managing an instance (starting and
stopping) is independent of the size of the database,and is space efficient. Two main pieces of technologies
that are used in order to achieve this system are ZF'S and Docker.

We collect data from a a medium sized company, a team of 6 developers, and track their requests for
database instances, over a period of 3 weeks, to see how much time and space is saved by using this system.

Finally, we present the results of collected data and compare it to a more primitive system, that we’ll
refer to as a baseline. In section 2 we propose the architecture of the system and give a high level overview.
In section 2.1 we give a brief introduction to ZFS and mention the features that are most important to this
system. In the following section 2.2 we give a short introduction to Docker and it’s role in the system. In
section 3 we present results of using the system in practice and in section 5 we conclude tour findings and
shortcomings and pitfalls of this system.

2 Architecture

The two main pieces of this system are ZFS and Docker. What follows are brief introductions to both
technologies, with a focus on key features that enable us to implement the proposed system. In section 2.3
we show how, in theory, ZF'S and Docker can be combined to generate the proposed database instances.

2.1 ZFS

ZFS, known as the Zettabyte File System or the Z File System, is an advanced local file system and volume
manager. It offers many features, such as data replication, duplication, compression, and scalability, as it can
address up to 256 quadrillion zettabytes (256 * 10* TB) [2, 4]. For considerations of this work, we will focus
on two most important ones, that will allow us to implement the wanted system. Those are copy-on-write
and snapshots.

2.1.1 CoW (Copy on Write)

ZF'S offers immutable datasets. Most file systems usually perform content replacement in-place, in order to
save space. ZFS however, gives you the ability to create a mutable dataset, from an immutable dataset. All
writes go through the mutable dataset, where all changes are written to new blocks. Meanwhile, the root
data, that is the immutable dataset, is left completely unchanged.

It is possible to have multiple, simultaneous mutable datasets from the same immutable set. Each new
mutable dataset is space efficient, as it only contains the blocks that have been changed. Creating a mutable
dataset is fast, since all ZFS has to do is copy some light-weight data structures that point to some blocks
on the disk. These mutable datasets can be "snapshotted" as the undergo changes, which in turn makes
them immutable [2, 3].

2.1.2 Snaphots

As a consequence of the CoW feature, snapshots represent the state of a dataset in time. They can be
seen as "commits" of work on a mutable dataset. Snapshots of a dataset follow each other sequentially in
time, as each new snapshot contains accumulated changes from a previous snapshot, thus creating a tree
structure that represents the history of a dataset. History is a tree structure due to possibility of branching
out to multiple snapshots, from a given snapshot, and not just one. The useful feature of snapshots is that
it is possible to create mutable simultaneous datasets from any one of them, meaning one has access to the
history of a dataset [2, 3].

The diagram 1 shows an example of a file and it’s snapshot history of changes. Not that in ZFS this
entire dataset occupies 7 KB, which contains 5 different versions of the same underlying file, compared to a
regular file system, which would need to copy this data 5 times, in total occupying 18 KB.

This is mainly because ZFS snapshots share the same underlying data blocks, which are indexed by
the immutable datasets. ZFS only writes new blocks when mutable datasets are changed, data is added or
deleted. In the example, mutable datasets are denoted with blue, and their practical size is 0 KB on the
disk, since no data has been mutated.

text_tmp2.txt
*

text_tmp2.txt text3 txt ab
*
text2.txt abc ab def
text.txt 2 123 (def] 123
abC 123 456 123 456
789 456 781
123 456 s m " 789 s m "
456 - O0KB 0KB
@ @
3KB 1KB 1KB
1KB 1KB
abc
123 123
&
789 222

text2_1.txt text2_2.txt

Figure 1: History of a text.txt file and its history of snapshots. Blue files indicate mutable datasets,
which can modify the contents of a file.

2.2 Docker

Docker is platform that offers OS-level virtualization in packages known as containers. This allows develop-
ers to package their application and all it’s dependencies in a fixed environment - a container. A container
acts as a light-weight virtual machine, with it’s own filesystem, networking and environment. Containers
are started from ¢mages, which is read-only template which define instructions on how containers must be
started. They also act as snapshots and are starting points, from which a containers are started from. Once
an image is defined, multiple containers can started from it [1].

Docker has a few key features, which contribute to the solution we have talked above:
Speed: starting containers usually takes only a few seconds.
Scalability: Due to resource efficiency and fast start-up times, it is possible to start or stop a lot of containers
in a short period of time.
Isolation: all containers are isolated from each other, as each container contains it’s own filesystem and
processing resources [5].

2.3 Creating a database instance

In order to create a database instance, a mutable ZFS dataset is required. In our case, a dataset is a regular
database file, which will be imported to the database server. The database server will be running inside
a docker container. The majority of database containers are already available on the official docker image
repository. Such images can be used and modified slightly to fit the specific use cases.

Each container can be run with an external volume. In order for the database server, inside the container,
to access the database file, the container instance must be started with such external volume. This external
volume in this case will be ZFS’s mutable dataset. Note that there is a 1:1 relationship between database
containers and mutable ZFS datasets that are mounted to them. Only one container should be accessing
a given mutable dataset. If one needs multiple instances of the same database, then the same amount of
mutable datasets must be created with ZFS.

In short, a database instance can be created by the following steps:

1. Create a dataset from the database file

2. Create a mutable dataset from the database dataset

3. Run a docker container with the mutable dataset as the external volume
4

. Instruct the database server inside the container to look for a database in the external volume (is
usually prepared in advance)

5. Connect to the database/container

When shutting down an instance of a database, the container must be stopped and ZFS mutable dataset
must be destroyed afterwards. A high-level view of this system can be seen in figure 2, where three developers
are working simultaneously on 2 different database versions.

= - -
T T T
sanen sasen sases r
johns database alices database bobs database
container

container container
SQL

Mounted as an Mounted as an
external volume external volume

Mounted as an
external volume

<

johns_database_ver1.db alices_database_ver1.db bobs_database_ver2.db
A’ A A’
database_ver1.db ‘ . database_ver2.db .
O H @ O H
.0 .O O
.-~ "0KB" .-"100 GB .-~ "OKB"
178 100 MB

Figure 2: Overview of the ZFS+Docker system. John and Alice are working from the same database
version, where John hasn’t updated its own database, but Alice has accumulated 100GB worth of
changes. Only Alice can see her changes to the database. Bob is working on his own database, which
has been modified by a 100MB worth of data compared to the database version Alice and John are
working on.

Table 1: Daily averages for all databases and comparison between systems

size instantiated ol 'data baseline | ZFS+Docker
copied

psi 1 760 GB 6.4 11 264 GB | 6h 15 min 1 min 23 s
psk 285 GB 2.06 587 GB 20 min 27 s
psr 411 GB 3.26 1334 GB 45 min 42's
phr 252 GB 3.73 822 GB 27 min 48 s
pmk 50 GB 2.13 107 GB 3 min 28 s
pba 178 GB 2.66 473 GB 16 min 35 s
total | 2 936 GB 20.24 14 487 GB 8h 6min 4 min 23 s

3 Results

We gather results from a team of 6 developers over a period of 3 weeks for 6 different databases. We log
each time a database instance was created. Graph for instance requests for every database can be seen in
figure 3.

We calculate the amount of data that must effectively be copied if the baseline system was used. The
baseline system being the most primitive way to implement database instances: copy a database file on disk
and import it as another database in your database server.

The total instance requests per database were calculated from gathered data, where we excluded the
requests made over the weekend, as those are usually made by automated systems and not by developers. We

also calculate the amount of time spent creating instances for the baseline system assuming disk I/O speeds
at 400MB/s. Time taken for an instance to be created by ZFS and Docker is assumed to be 13 seconds, as
that is the average speed of instantiation on the development teams database server - around 3 seconds for
existing container shutdown and snapshot clone to be deleted, 3 seconds for generating a mutable database
dataset, and the rest being the container startup and for the database server inside the container to be fully
initialized.

Comparison between the proposed system and the baseline is seen in table 1. Note that the baseline

system must actually copy in total 14.4TB of data every day, meanwhile the ZFS and Docker system does
not need to copy any data when an instance is created.

Figure 3: Graph of requests for database instances over a period of 3 weeks

Wednesday 21 Jun
Tuesday 20 Jun
Monday 19 Jun
Sunday 18 Jun

Saturday 17 Jun

Il
i
|
I
I

Friday 16 Jun

Thursday 15 Jun

Wednesday 14 Jun

Tuesday 13 Jun

Monday 12 Jun
Sunday 11 Jun
Saturday 10 Jun

Friday 09 Jun

Instance startup timestamp

Thursday 08 Jun
Wednesday 07 Jun
Tuesday 06 Jun
Monday 05 Jun
Sunday 04 Jun
Saturday 03 Jun

Friday 02 Jun

Thursday 01 Jun

pba phr pmk psi psk psr

Database name

4 Further research

Both Docker and ZF'S bring some overhead by running databases in such configuration. There are a few key
things to consider when setting up a system like this. First, the size of ZFS data blocks can be adjusted.
This is important, as it plays a key role in how fast a mutable dataset will grow as changes are made to the
database, specially when changes are "small", but happen to be scattered across different blocks.

Second, is measuring the impact on the SQL server performance as it is running inside a container,
and not natively. Usually, Dockers performance is acceptable, but in the case of heavy data processing
applications, whose performance might be critical, such a thing must be considered.

(5]

5 Conclusion

We presented a system for fast database instatiation and compared it to a baseline system. Results show
that this system is much faster and is more space efficient. Another benefit of this system is that it scales
independently of the database size, since ZF'S does not copy any data when mutable datasets are created.

We showed that on average, in a team of 6 developers, about 20 database instances are requested every
day. That totals to over 14TB of data "replication" everyday. The proposed system is orders of magnitude
faster, in creating database instance and scales independently of the database size, while also having a min-
imal space footprint compared to the baseline system.

Another thing to consider, would be to modify this system by only having one container for multiple
databases. Currently, there is no way to add external volumes to a running container, so one would have
to commit and stop the running container which is "hosting" multiple databases, then start it again by
appending another volume. Since this is tedious and harder to manage, and would prevent prevent instance
independence, since all database users would have to wait for container to restart. Because running multiple
containers and SQL servers inside them is not too expensive, some overhead is acceptable - each database
instance having it’s own container and SQL server inside.

References

[1] Charles Anderson. Docker [software engineering]. IEEE Software, 32(3):102-c3, 2015.

[2] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark Shellenbaum. The zettabyte file
system. In Proc. of the 2nd Usenixz Conference on File and Storage Technologies, volume 215, 2003.

[3] Open-e. Zfs essentials — copy-on-write snapshots. https://www.open-e.com/blog/copy-on-write-
snapshots/.

[4] Oracle. Oracle solaris zfs administration guide. https://docs.oracle.com/cd/E2382301/htmi/819 —
5461/z f sover — 2.htmlgayou.

Babak Bashari Rad, Harrison John Bhatti, and Mohammad Ahmadi. An introduction to docker and analysis

of its performance. International Journal of Computer Science and Network Security (IJCSNS), 17(3):228,
2017.

