
Empirical study on the performance of Neuro
Evolution of Augmenting Topologies (NEAT)

Domen Vake
domen.vake@innroenew.eu

Innorenew CoE
Izola, Slovenia

Aleksandar Tošić
aleksandar.tosic@upr.si

University of Primorska, UP FAMNIT
Koper, Slovenia
Innorenew CoE
Izola, Slovenia

Jernej Vičič
jernej.vicic@upr.si

University of Primorska, UP FAMNIT
Koper, Slovenia
ZRC-SAZU

Ljubljana, Slovenia

ABSTRACT
In this paperwe provide empirical results on training a neural
network with a genetic algorithm. We test various features
of the generalized genetic algorithms, namely spieciation
and fitness sharing and present the statistical analysis of all
three variations. An obstacle avoidance problem was created
in which the objective is for vehicles to traverse the course.
We present interesting observations about the differences
between evolutionary techniques and argue that there is a
significant benefit in approaches that aim to diversify the
gene pool as a mechanism for avoiding local minima.

I.2.1 ARTIFICIAL INTELLIGENCE Applications and Expert
Systems

1 INTRODUCTION
Genetic algorithms (GA) have been used extensively for vari-
ous optimization problems. Arguably, their wide usage spec-
trum can be accredited to their simplicity and the fact no
assumptions are made about the problem. Consequently,
most variations of genetic algorithms have strived to main-
tain these properties. Many techniques were proposed in an
effort to diversify the gene pool and at the same time avoid
getting stuck in local minima.
In some cases, finding multiple sub-optimal solutions is ben-
eficial [4]. With the recent development of neural networks,
genetic algorithms have regained a lot of attention as an
viable learning technique. There are many variations to how
typical GA functions such as gene encoding, crossover, and
mutation are implemented when applied to neural networks.
A very promising family of algorithms are descendents of
the general NEAT algorithm.
Authors proposed some extensions of the original NEAT algo-
rithm [10] such as rtNEAT [8] that allows evolution to occur
in real time rather than through the iteration of generations
as used by most genetic algorithms. The basic idea is to put
the population under constant evaluation with a "lifetime"
timer on each individual in the population. Phased pruning
implemented in SharpNEAT framework [2] adds periodic

pruning of the network topologies of candidate solutions dur-
ing the evolution process. HyperNEAT [9] is specialized to
evolve large scale structures. HyperNEAT has recently been
extended to also evolve plastic Artificial Neural Networks
and to evolve the location of every neuron in the network
separately.
The first video game to implement Content-GeneratingNEAT
(cgNEAT) [3] that evolves custom video game content based
on user preferences is Galactic Arms Race, a space-shooter
game in which unique particle system weapons are evolved
based on player usage statistics. Neuro-Evolving Robotic
Operatives (NERO) [5] is a video game that applies NEAT to
train robots that compete among themselves. odNEAT [7]
is an online and decentralized version of NEAT designed
for multi-robot systems, it is executed onboard robots them-
selves during task execution to continuously optimize the
parameters and the topology of the artificial neural network-
based controllers.

2 IMPLEMENTATION
In this section we show specifics to our implementation.
The optimization problem is agent based, two-dimensional
driving simulation where the objective is to have agents
traverse the obstacle course. The agent is considered evolved
if it has made a full loop around the track without hitting
the wall. It’s fitness is based on the distance traveled within
a fixed amount of time and is weighted by the amount of
checkpoints reached. This ensures the agents move through
course and avoid driving in circles.

Agents
Every tick of simulation the agent’s task is to make a decision
on the move it wants to perform within the environment.
The decision pool consists of five possible moves, which are
do nothing, drive forward, drive backwards/brake, turn left
and turn right. The turning is dependant on the speed of the
agent, so if the agent is standing still, turning has no effect
on it. The decision is chosen with the use of the artificial
neural network that is represented as agent’s genome and
it is based on the agents relative location within the track.



The agents are aware of their surroundings with the help
of sight lines, which are represented as lines that fan out
from the agent’s location as shown in the figure 1. Each line
calculates a possible intersection with a wall and tells the
agent the distance to the closest wall in the line’s direction,
if one exists. With agent’s speed values are then passed to
the genome for a prediction.

Figure 1: Figure shows the agent and his sight lines (red
lines) and the detection of thewall on the track (blue points).

Genome encoding
Artificial neural network in the genome is represented as
the list of nodes and a list of connections of the network
as described in [10]. Upon their creation, all new genes are
given an innovation number to ensure the differentiation
between the genes. If the gene already exists somewhere in
the population (i.e. connection that connects nodes x an y),
it is given the same number as the original gene, otherwise a
new incrementally higher innovation number is given to the
gene. To ensure, that the same gene does not get more than
one innovation number, genes must never be deleted, so the
number doesn’t get lost. For that purpose every connection
has a value that represents whether the gene is active and
should be represented in the phenotype of the agent. The
starting artificial neural network of the agents is a fully
connected network with the input layer of size 7 (speed and
all sight lines) and output layer of size 5 (all the possible
actions of the agents). Activation function of the nodes in
the output layer is the rectified linear unit and all the other
nodes use the sigmoid function.

Crossover
Innovation numbers provide away to crossover two genomes
by matching the genes of the two parents. The genes are
split into groups of matching genes (genes that are contained
in genomes of both parents), disjoint genes (genes that are
contained in only one parent in the middle) and excess genes
(genes that are contained in only one parent at the end).
When creating an offspring genome, the matching genes are
inherited from a random parent, whereas the disjoint and
excess genes are inherited from the more fit parent[10].

Mutation
With crossover the population is likely to discard genes that
don’t provide good agent behaviour, but that can lead to gene
deprivation. We introduce genetic innovation to the system
by mutating the genome, where some mutations affect the
topology and some the optimization of the network [11].

Edge mutation. When optimizing the current topology of the
network the existing connections are being mutated. The
weight of the connection is either being multiplied by a num-
ber between 0 and 2, to provide weight optimization or it is
multiplied by -1, to change the polarity of the connection. In
case of topological mutation we add a new connection be-
tween two unconnected nodes in a way, that doesn’t create a
cycle in a digraph representation of the network and we give
it a random weight or we deactivate a connection. The mu-
tation rates we used were 0.25 for new connection/deactivate
connection, 0.8 for adjust weight mutation and 0.2 for flip
weight mutation.

Vertex mutation. We can also mutate the genome of the net-
work by adding new vertices to increase its complexity and
add new options to the pool of solutions. A new vertex is
added by choosing a random edge e between vertices A and
B and deactivating it. A new vertex C is inserted, and two
new edges created connecting vertex A and B with C . The
weight of the edge leading to the new vertex C , is set to 1
and the edge leading to the vertex B is set to same wight of
the disabled edge e to minimize the performance impact of
the new genes on the genome. The mutation rates for the
new node mutation that we used were 0.01.

Species
When adding innovation to the genome, it is likely that the
mutation will first reduce the fitness of the agent and will
be removed before it has the chance to evolve and optimize.
To counter that and protect innovation, we introduce the
notion of speciation, where the agents are split into groups
that represent species, based on the genotypes.

Genetic Distance. To find the genetic difference between two
genomes the idea of compatibility distance (δ ) is introduced.
The less genetic history two genomes have, the more disjoint
(D) and excess genes (E) and the less matching genes they
have[10]. There numbers can be normalized with the total
number of genes in the larger genome (N ) and use them
to calculate the compatibility distance. We also take into
account the average weight differences of matching genes
(W ). The coefficientsw1,w2 andw3 represent the importance
of each of the factors and can be adjusted.

δ =
w1E

N
+
w2D

N
+w3W

2



Every generation each agent is placed into a species, if he’s
compatibility distance to the species representative is smaller
than the prefixed threshold (δt ). If the agent does not fit into
any of the species, he now represents a new species. The
weights that were used in our case are w1 = 1.3, w2 = 1.3,
w3 = 1.0 and δt = 2.0.

Selection. In the selection step, we remove the worse half of
the agents from the population based on their fitness score.
That would in general remove most of the innovation within
the population, since the mutated agents tend to perform
worse. So instead of removing bottom half in general, we do
it per species. That means that every agent only competes
with agents that are a part of the same species. This provides
an extra layer of protection of the new genes that have not
yet had the time to adjust and optimize.

Explicit Fitness Sharing. We used the explicit fitness shar-
ing[1] niching technique, which normalizes the fitness (f )
of the agent according to the size of the species that he’s in.
With niching it is unlikely that one species would take over
the whole population therefore it widens the search in the
solution space.

f ′i =
fi∑n

j=1 sh(δ (i, j))

If the distance between the agents i and j (δ (i, j)) is smaller
than the threshold, the value of the sharing function sh is
set to 1 otherwise its set to 0[6].

3 RESULTS AND CONCLUSIONS
Four tracks were prepared as shown on figure 4. We tested
how the model performs if we remove the different features
of the algorithm that provide the protection of the innovation
within the population. Explicit fitness sharing and specia-
tion were chosen. From that, we formed four tests: normal,
that includes all sections of the algorithm, no efs, that have
explicit fitness sharing disabled, no speciation with disabled
speciation (only one species during simulation) and no efs
and speciation that does neither include the explicit fitness
sharing nor speciation. The size of the population was set
to 1000 and all simulations ran for 250 generations wheres
every generation was 750 ticks long. Each test was ran ten
times on each of the tracks and for every generation max
fitness, mean fitness, standard deviation and whether the
model has found the sufficient solution were collected. Also
every fifth generation we collected the data of all species,
their size, max fitness, mean fitness and standard deviation.

Table 1 shows the aggregated results for individual tracks
across multiple runs. Track 1 has seen the best results and
least complexity in the neural network as agents only need
to turn one direction to successfully traverse the track. The

second best results were obtained by track 3, in which 75%
of the simulations evolved and completed the track. Tracks
2 and 4 were arguably the hardest with 60% and 40% respec-
tively. When considering only the evolution rate, all the test
showed similar results, since all tests had 67.5-70.0% evolu-
tion rate. The test, where explicit fitness sharing was disabled
found the best solution in two of the four tracks. This shows,
that the weights for the explicit fitness sharing might not
have been optimal, for the problem at hand. In the column
µ(x) shows the mean fitness through all the generations and
simulations of the test. The data shows, that the test where
speciation and explicit fitness sharing were both disabled in
general performed better. However the optimal solution was
not found in any of the tracks. This could be a consequence
of the model finding and optimizing to a local minimum fast,
but due to the lack of innovation, being unable to escape.

Table 1: Table shows the data gathered from tests. Every row
represents summarized data from 10 iterations of the test
on specific track Fitness is represented as x and is normal-
ized by the highest fitness achieved on that track. Tests: N-
normal, E-no efs, S-no speciation, SE-no efs and speciation

Track Test max(x) µ(x) σ (x) Evolved[%]
1 Track 1 N 0,99 0,12 0,58 100
2 Track 1 E 0,98 0,18 0,45 100
3 Track 1 S 1 0,13 0,57 100
4 Track 1 SE 0,98 0,21 0,46 100
5 Track 2 N 0,96 0,03 0,15 50
6 Track 2 E 1 0,05 0,20 50
7 Track 2 S 0,99 0,04 0,24 80
8 Track 2 SE 0,88 0,05 0,19 60
9 Track 3 N 0,98 0,05 0,24 80
10 Track 3 E 1 0,12 0,37 80
11 Track 3 S 0,93 0,06 0,26 80
12 Track 3 SE 0,83 0,09 0,28 60
13 Track 4 N 1 0,01 0,16 40
14 Track 4 E 0,61 0,03 0,14 50
15 Track 4 S 0,64 0,01 0,05 20
16 Track 4 SE 0,84 0,06 0,24 50

Figures 2, and 3 illustrate the impact of fitness sharing on
the evolution of existing species and the emergence of new
ones. We observe that the number of different species that
emerged is significantly higher when fitness sharing is en-
abled. This is expected as the mechanism allows new species
to be preserved across generations in order to diversify the
gene pool. However, we also observe that a significant num-
ber of species that emerged survived across all generations
and achieved significant improvements to their fitness (rep-
resentative). Additionally, we can observe that in both cases,

3



Figure 2: Species with explicit fitness sharing enabled Figure 3: Species with explicit fitness sharing disabled

(a) Track 1 (b) Track 2

(c) Track 3 (d) Track 4

Figure 4: Tracks used for testing the model’s performance

some newly emerged species never evolve and improve their
fitness which eventually causes them to be removed. This
indicates that even with explicit fitness sharing, species with
bad genes do not impact the overall results even though their
genes are initially protected.

With no fitness sharing, there is a trend of one big species
and a few smaller ones, that explore the solution space and
when a new innovation is found with better results, it takes
over the population. Contrary to that, evolution of the pop-
ulation, that shares fitness splits into more species and is
searches the space for a wider set of solutions.

All the presented software is available under opensource
licence at Github1.

1NEAT-driving: https://github.com/VakeDomen/NEAT-driving

4 ACKNOWLEDGMENTS
The authors gratefully acknowledge the European Commis-
sion for funding the InnoRenew CoE (Grant Agreement
#739574) under the H2020 Widespread Teaming programme
and investment funding from the Republic of Slovenia and
the European Regional Development Fund.

REFERENCES
[1] David E Goldberg, Jon Richardson, et al. 1987. Genetic algorithms with

sharing for multimodal function optimization. In Genetic algorithms
and their applications: Proceedings of the Second International Conference
on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum, 41–49.

[2] Colin Green. 2004. Phased searching with NEAT: alternating between
complexification and simplification. Unpublished manuscript (2004).

[3] Erin J Hastings, Ratan K Guha, and Kenneth O Stanley. 2009. Evolving
content in the galactic arms race video game. In IEEE CIG. 241–248.

[4] Jian-Ping Li, Marton E Balazs, Geoffrey T Parks, and P John Clarkson.
2002. A species conserving genetic algorithm for multimodal function
optimization. Evolutionary computation 10, 3 (2002), 207–234.

[5] Risto Miikkulainen, Bobby D Bryant, Ryan Cornelius, Igor V Karpov,
Kenneth O Stanley, and Chern Han Yong. 2006. Computational intel-
ligence in games. Computational Intelligence: Principles and Practice
(2006), 155–191.

[6] Bruno Sareni and Laurent Krahenbuhl. 1998. Fitness sharing and nich-
ing methods revisited. IEEE transactions on Evolutionary Computation
2, 3 (1998), 97–106.

[7] Fernando Silva, Paulo Urbano, Luís Correia, and Anders Lyhne Chris-
tensen. 2015. odNEAT: An algorithm for decentralised online evolution
of robotic controllers. Evolutionary Computation 23, 3 (2015), 421–449.

[8] Kenneth O Stanley, Bobby D Bryant, and Risto Miikkulainen. 2003.
Evolving adaptive neural networks with and without adaptive
synapses. In CEC’03., Vol. 4. IEEE, 2557–2564.

[9] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. 2009. A
hypercube-based encoding for evolving large-scale neural networks.
Artificial life 15, 2 (2009), 185–212.

[10] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural
networks through augmenting topologies. Evolutionary computation
10, 2 (2002), 99–127.

[11] Pushpendra Kumar Yadav and NL Prajapati. 2012. An overview of
genetic algorithm and modeling. IJSRP 2, 9 (2012), 1–4.

4

https://github.com/VakeDomen/NEAT-driving

	Abstract
	1 Introduction
	2 Implementation
	Agents
	Genome encoding
	Crossover
	Mutation
	Species

	3 Results and conclusions
	4 Acknowledgments
	References

